Publications and references

This page holds a collection of publications related to adcc and lists references and software used in the context of adcc.

We kindly ask all users of adcc, who find the package useful for their research to cite the adcc paper [HSF+19] and the DOI of the adcc code in the version which was used for the calculation.

adcc publications

Paper: https://img.shields.io/badge/hal-preprint-red
Code: https://zenodo.org/badge/215731857.svg

[HSF+19]Michael F. Herbst, Maximilian Scheurer, Thomas Fransson, Dirk R. Rehn, and Andreas Dreuw. adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods. Submitted., 2019. URL: https://hal.archives-ouvertes.fr/hal-02319517.

Other references

[CDS80]L. S. Cederbaum, W. Domcke, and J. Schirmer. Many-body theory of core holes. Phys. Rev. A, 22:206–222, 1980. doi:10.1103/PhysRevA.22.206.
[Dav75]Ernest R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comp. Phys., 17(1):87 – 94, 1975. doi:10.1016/0021-9991(75)90065-0.
[DW14]Andreas Dreuw and Michael Wormit. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput. Mol. Sci., 5(1):82–95, 2014. doi:10.1002/wcms.1206.
[Fet71]Alexander L. Fetter. Quantum theory of many-particle systems. McGraw-Hill, San Francisco ; London, 1971.
[FD19]Thomas Fransson and Andreas Dreuw. Simulating x-ray emission spectroscopy with algebraic diagrammatic construction schemes for the polarization propagator. J. Chem. Theory Comput., 15:546–556, 1 2019. doi:10.1021/acs.jctc.8b01046.
[FRDN17]Thomas Fransson, Dirk R Rehn, Andreas Dreuw, and Patrick Norman. Static polarizabilities and c6 dispersion coefficients using the algebraic-diagrammatic construction scheme for the complex polarization propagator. J. Chem. Phys., 146(9):094301, 2017.
[KRW+12]S. Knippenberg, D. R. Rehn, M. Wormit, J. H. Starcke, I. L. Rusakova, A. B. Trofimov, and A. Dreuw. Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: two-photon absorption spectra. J. Chem. Phys., 136:064107, 2 2012. doi:10.1063/1.3682324.
[LRD16]Daniel Lefrancois, Dirk R. Rehn, and Andreas Dreuw. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator. J. Chem. Phys., 145:084102, 8 2016. doi:10.1063/1.4961298.
[LTMartinezD17]Daniel Lefrancois, Deniz Tuna, Todd J. Mart’ınez, and Andreas Dreuw. The spin-flip variant of the algebraic-diagrammatic construction yields the correct topology of s1/s0 conical intersections. J. Chem. Theory Comput., 13:4436–4441, 9 2017. doi:10.1021/acs.jctc.7b00634.
[LWD15]Daniel Lefrancois, Michael Wormit, and Andreas Dreuw. Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi-reference electronic ground states exploiting the spin-flip ansatz. J. Chem. Phys., 143(12):124107, 2015. doi:10.1063/1.4931653.
[ND18]P. Norman and A. Dreuw. Simulating x-ray spectroscopies and calculating core-excited states of molecules. Chem. Rev., 118:7208–7248, 2018. doi:10.1021/acs.chemrev.8b00156.
[RDN17]D. R. Rehn, A. Dreuw, and P. Norman. Resonant inelastic x-ray scattering amplitudes and cross section in the algebraic diagrammatic construction/intermediate state representation (ADC/ISR) approach. J. Chem. Theory Comput., 13:5552–5559, 2017. doi:10.1021/acs.jctc.7b00636.
[ST04]J. Schirmer and A. B. Trofimov. Intermediate state representation approach to physical properties of electronically excited molecules. J. Chem. Phys., 120(24):11449–11464, 2004. doi:10.1063/1.1752875.
[Sch82]Jochen Schirmer. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys. Rev. A, 26:2395–2416, Nov 1982. doi:10.1103/PhysRevA.26.2395.
[Sch91]Jochen Schirmer. Closed-form intermediate representations of many-body propagators and resolvent matrices. Phys. Rev. A, 43:4647–4659, May 1991. doi:10.1103/PhysRevA.43.4647.
[Sch18]Jochen Schirmer. Many-Body Methods for Atoms, Molecules and Clusters. Springer, 2018.
[TMG+00]A. B. Trofimov, T. É. Moskovskaya, E. V. Gromov, N. M. Vitkovskaya, and J. Schirmer. Core-level electronic spectra in adc(2) approximation for polarization propagator: carbon monoxide and nitrogen molecules. J. Struct. Chem., 41:483–494, 2000. doi:10.1007/BF02742009.
[TKWS06]A.B. Trofimov, I.L. Krivdina, J. Weller, and J. Schirmer. Algebraic-diagrammatic construction propagator approach to molecular response properties. Chem. Phys., 329(1-3):1–10, October 2006. doi:10.1016/j.chemphys.2006.07.015.
[WHWD15]J. Wenzel, A. Holzer, M. Wormit, and A. Dreuw. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states. J. Chem. Phys., 142:214104, 2015. doi:10.1063/1.4921841.
[WWD14a]Jan Wenzel, Michael Wormit, and Andreas Dreuw. Calculating Core-Level Excitations and X-Ray Absorption Spectra of Medium-Sized Closed-Shell Molecules with the Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator. J. Comput. Chem., 35:1900–1915, 2014. doi:10.1002/jcc.23703.
[WWD14b]Jan Wenzel, Michael Wormit, and Andreas Dreuw. Calculating X-Ray Absorption Spectra of Open-Shell Molecules with the Unrestricted Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator. J. Chem. Theory Comput., 10:4583–4598, 2014. doi:10.1021/ct5006888.
[WRH+14]Michael Wormit, Dirk R. Rehn, Philipp H.P. Harbach, Jan Wenzel, Caroline M. Krauter, Evgeny Epifanovsky, and Andreas Dreuw. Investigating excited electronic states using the algebraic diagrammatic construction (adc) approach of the polarisation propagator. Mol. Phys., 112(5-6):774–784, 2014. doi:10.1080/00268976.2013.859313.
[YD17]Chong Yang and Andreas Dreuw. Evaluation of the restricted virtual space approximation in the algebraic-diagrammatic construction scheme for the polarization propagator to speed-up excited-state calculations. J. Comput. Chem., 38:1528–1537, 6 2017. doi:10.1002/jcc.24794.