cvs_adc2¶

adcc.
cvs_adc2
(*args, **kwargs)¶ Run an ADC calculation.
Main entry point to run an ADC calculation. The reference to build the ADC calculation upon is supplied using the data_or_matrix argument. adcc is pretty flexible here. Possible options include:
 HartreeFock data from a host program, e.g. a molsturm SCF
state, a pyscf SCF object or any class implementing the
adcc.HartreeFockProvider
interface. From this data all objects mentioned in (b) to (d) will be implicitly created and will become available in the returned state.  A
adcc.ReferenceState
object  A
adcc.LazyMp
object  A
adcc.AdcMatrix
object
Parameters:  data_or_matrix – Data containing the SCF reference
 n_states (int, optional) –
 kind (str, optional) –
 n_singlets (int, optional) –
 n_triplets (int, optional) –
 n_spin_flip (int, optional) – Specify the number and kind of states to be computed. Possible values for kind are “singlet”, “triplet”, “spin_flip” and “any”, which is the default. For unrestricted references clamping spinpure singlets/triplets is currently not possible and kind has to remain as “any”. For restricted references kind=”singlets” or kind=”triplets” may be employed to enforce a particular excited states manifold. Specifying n_singlets is equivalent to setting kind=”singlet” and n_states=5. Similarly for n_triplets and n_spin_flip. n_spin_flip is only valid for unrestricted references.
 conv_tol (float, optional) – Convergence tolerance to employ in the iterative solver for obtaining the ADC vectors (default: 1e6 or SCF tolerance / 100, whatever is larger)
 solver_method (str, optional) – The eigensolver algorithm to use.
 n_guesses (int, optional) – Total number of guesses to compute. By default only guesses derived from the singles block of the ADC matrix are employed. See n_guesses_doubles for alternatives. If no number is given here n_guesses = min(4, 2 * number of excited states to compute) or a smaller number if the number of excitation is estimated to be less than the outcome of above formula.
 n_guesses_doubles (int, optional) – Number of guesses to derive from the doubles block. By default none unless n_guesses as explicitly given or automatically determined is larger than the number of singles guesses, which can be possibly found.
 guesses (list, optional) – Provide the guess vectors to be employed for the ADC run. Takes preference over n_guesses and n_guesses_doubles, such that these parameters are ignored.
 output (stream, optional) – Python stream to which output will be written. If None all output is disabled.
 core_orbitals (int or list or tuple, optional) – The orbitals to be put into the coreoccupied space. For ways to
define the core orbitals see the description in
adcc.ReferenceState
. Required if corevalence separation is applied and the input data is given as data from the host program (i.e. option (a) discussed above)  frozen_core (int or list or tuple, optional) – The orbitals to select as frozen core orbitals (i.e. inactive occupied
orbitals for both the MP and ADC methods performed). For ways to define
these see the description in
adcc.ReferenceState
.  frozen_virtual (int or list or tuple, optional) – The orbitals to select as frozen virtual orbitals (i.e. inactive
virtuals for both the MP and ADC methods performed). For ways to define
these see the description in
adcc.ReferenceState
.
Other Parameters:  max_subspace (int, optional) – Maximal subspace size
 max_iter (int, optional) – Maximal number of iterations
Returns: An
adcc.ExcitedStates
object containing theadcc.AdcMatrix
, theadcc.LazyMp
ground state and theadcc.ReferenceState
as well as computed eigenpairs.Return type: Examples
Run an ADC(2) calculation on top of a pyscf RHF reference of hydrogen flouride.
>>> from pyscf import gto, scf ... mol = gto.mole.M(atom="H 0 0 0; F 0 0 1.1", basis="sto3g") ... mf = scf.RHF(mol) ... mf.conv_tol_grad = 1e8 ... mf.kernel() ... ... state = adcc.run_adc(mf, method="adc2", n_singlets=3)
The same thing can also be achieved using the adcc.adcN family of shorthands (see e.g.
adcc.adc2()
,adcc.cvs_adc2x()
):>>> state = adcc.adc2(mf, n_singlets=3)
Run a CVSADC(3) calculation of O2 with one coreoccupied orbital
>>> from pyscf import gto, scf ... mol = gto.mole.M(atom="O 0 0 0; O 0 0 1.2", basis="sto3g") ... mf = scf.RHF(mol) ... mf.conv_tol_grad = 1e8 ... mf.kernel() ... ... state = adcc.cvs_adc3(mf, core_orbitals=1, n_singlets=3)
 HartreeFock data from a host program, e.g. a molsturm SCF
state, a pyscf SCF object or any class implementing the