Tensor¶
-
class
libadcc.Tensor¶ Bases:
pybind11_builtins.pybind11_objectClass representing the Tensor objects used for computations in adcc
Attributes Summary
Methods Summary
add_linear_combination(self, arg0, arg1)Add a linear combination of tensors to this tensor
antisymmetrise_to(self, arg0, arg1)copy(self)Returns a deep copy of the tensor.
copy_to(self, arg0)Writes a deep copy of the tensor to another tensor
describe_symmetry(self)Return a string providing a hopefully discriptive rerpesentation of the symmetry information stored inside the tensor.
dot(*args, **kwargs)Overloaded function.
empty_like(self)is_allowed(self, arg0)Is a particular index allowed by symmetry
nosym_like(self)ones_like(self)select_n_absmax(self, arg0)Select the n absolute maximal elements.
select_n_absmin(self, arg0)Select the n absolute minimal elements.
select_n_max(self, arg0)Select the n maximal elements.
select_n_min(self, arg0)Select the n minimal elements.
set_from_ndarray(*args, **kwargs)Overloaded function.
set_immutable(self)Set the tensor as immutable, allowing some optimisations to be performed.
set_mask(self, arg0, arg1)Set all elements corresponding to an index mask, which is given by a string eg.
set_random(self)Set all tensor elements to random data, adhering to the internal symmetry.
symmetrise_to(self, arg0, arg1)to_ndarray(self)Export the tensor data to a standard np::ndarray by making a copy.
transpose(*args, **kwargs)Overloaded function.
zeros_like(self)Attributes Documentation
-
mutable¶
-
ndim¶
-
shape¶
-
size¶
Methods Documentation
-
add_linear_combination(self: libadcc.Tensor, arg0: numpy.ndarray[float64], arg1: list) → libadcc.Tensor¶ Add a linear combination of tensors to this tensor
-
antisymmetrise_to(self: libadcc.Tensor, arg0: libadcc.Tensor, arg1: list) → None¶
-
copy(self: libadcc.Tensor) → libadcc.Tensor¶ Returns a deep copy of the tensor.
-
copy_to(self: libadcc.Tensor, arg0: libadcc.Tensor) → None¶ Writes a deep copy of the tensor to another tensor
-
describe_symmetry(self: libadcc.Tensor) → str¶ Return a string providing a hopefully discriptive rerpesentation of the symmetry information stored inside the tensor.
-
dot(*args, **kwargs)¶ Overloaded function.
dot(self: libadcc.Tensor, arg0: libadcc.Tensor) -> float
dot(self: libadcc.Tensor, arg0: list) -> numpy.ndarray[float64]
-
empty_like(self: libadcc.Tensor) → libadcc.Tensor¶
-
is_allowed(self: libadcc.Tensor, arg0: tuple) → bool¶ Is a particular index allowed by symmetry
-
nosym_like(self: libadcc.Tensor) → libadcc.Tensor¶
-
ones_like(self: libadcc.Tensor) → libadcc.Tensor¶
-
select_n_absmax(self: libadcc.Tensor, arg0: int) → list¶ Select the n absolute maximal elements.
-
select_n_absmin(self: libadcc.Tensor, arg0: int) → list¶ Select the n absolute minimal elements.
-
select_n_max(self: libadcc.Tensor, arg0: int) → list¶ Select the n maximal elements.
-
select_n_min(self: libadcc.Tensor, arg0: int) → list¶ Select the n minimal elements.
-
set_from_ndarray(*args, **kwargs)¶ Overloaded function.
set_from_ndarray(self: libadcc.Tensor, arg0: array) -> None
Set all tensor elements from a standard np::ndarray by making a copy. Provide an optional tolerance argument to increase the tolerance for the check for symmetry consistency.
set_from_ndarray(self: libadcc.Tensor, arg0: numpy.ndarray[float64], arg1: float) -> None
Set all tensor elements from a standard np::ndarray by making a copy. Provide an optional tolerance argument to increase the tolerance for the check for symmetry consistency.
-
set_immutable(self: libadcc.Tensor) → None¶ Set the tensor as immutable, allowing some optimisations to be performed.
-
set_mask(self: libadcc.Tensor, arg0: str, arg1: float) → None¶ Set all elements corresponding to an index mask, which is given by a string eg. ‘iijkli’ sets elements T_{iijkli}
-
set_random(self: libadcc.Tensor) → None¶ Set all tensor elements to random data, adhering to the internal symmetry.
-
symmetrise_to(self: libadcc.Tensor, arg0: libadcc.Tensor, arg1: list) → None¶
-
to_ndarray(self: libadcc.Tensor) → numpy.ndarray[float64]¶ Export the tensor data to a standard np::ndarray by making a copy.
-
transpose(*args, **kwargs)¶ Overloaded function.
transpose(self: libadcc.Tensor) -> libadcc.Tensor
transpose(self: libadcc.Tensor, arg0: tuple) -> libadcc.Tensor
-
zeros_like(self: libadcc.Tensor) → libadcc.Tensor¶
-