Tensor¶
-
class
libadcc.Tensor¶ Bases:
pybind11_builtins.pybind11_objectClass representing the Tensor objects used for computations in adcc
Attributes Summary
Does the tensor need evaluation or is it fully evaluated and resilient in memory.
Methods Summary
antisymmetrise(*args, **kwargs)Overloaded function.
copy(self)Returns a deep copy of the tensor.
describe_expression(*args, **kwargs)Overloaded function.
describe_symmetry(self)Return a string providing a hopefully descriptive representation of the symmetry information stored inside the tensor.
diagonal(self, *args)dot(*args, **kwargs)Overloaded function.
empty_like(self)evaluate(self)Ensure the tensor to be fully evaluated and resilient in memory.
is_allowed(self, arg0)Is a particular index allowed by symmetry
nosym_like(self)ones_like(self)select_n_absmax(self, arg0)Select the n absolute maximal elements.
select_n_absmin(self, arg0)Select the n absolute minimal elements.
select_n_max(self, arg0)Select the n maximal elements.
select_n_min(self, arg0)Select the n minimal elements.
set_from_ndarray(*args, **kwargs)Overloaded function.
set_immutable(self)Set the tensor as immutable, allowing some optimisations to be performed.
set_mask(self, arg0, arg1)Set all elements corresponding to an index mask, which is given by a string eg.
set_random(self)Set all tensor elements to random data, adhering to the internal symmetry.
symmetrise(*args, **kwargs)Overloaded function.
to_ndarray(self)Export the tensor data to a standard np::ndarray by making a copy.
transpose(*args, **kwargs)Overloaded function.
zeros_like(self)Attributes Documentation
-
T¶
-
flags¶
-
mutable¶
-
ndim¶
-
needs_evaluation¶ Does the tensor need evaluation or is it fully evaluated and resilient in memory.
-
shape¶
-
size¶
-
space¶
-
subspaces¶
Methods Documentation
-
antisymmetrise(*args, **kwargs)¶ Overloaded function.
antisymmetrise(self: libadcc.Tensor, arg0: list) -> libadcc.Tensor
antisymmetrise(self: libadcc.Tensor, *args) -> libadcc.Tensor
-
copy(self: libadcc.Tensor) → libadcc.Tensor¶ Returns a deep copy of the tensor.
-
describe_expression(*args, **kwargs)¶ Overloaded function.
describe_expression(self: libadcc.Tensor, arg0: str) -> str
Return a string providing a hopefully descriptive representation of the tensor expression stored inside the object.
describe_expression(self: libadcc.Tensor) -> str
-
describe_symmetry(self: libadcc.Tensor) → str¶ Return a string providing a hopefully descriptive representation of the symmetry information stored inside the tensor.
-
diagonal(self: libadcc.Tensor, *args) → libadcc.Tensor¶
-
dot(*args, **kwargs)¶ Overloaded function.
dot(self: libadcc.Tensor, arg0: libadcc.Tensor) -> float
dot(self: libadcc.Tensor, arg0: list) -> numpy.ndarray[numpy.float64]
-
empty_like(self: libadcc.Tensor) → libadcc.Tensor¶
-
evaluate(self: libadcc.Tensor) → libadcc.Tensor¶ Ensure the tensor to be fully evaluated and resilient in memory. Usually happens automatically when needed. Might be useful for fine-tuning, however.
-
is_allowed(self: libadcc.Tensor, arg0: tuple) → bool¶ Is a particular index allowed by symmetry
-
nosym_like(self: libadcc.Tensor) → libadcc.Tensor¶
-
ones_like(self: libadcc.Tensor) → libadcc.Tensor¶
-
select_n_absmax(self: libadcc.Tensor, arg0: int) → list¶ Select the n absolute maximal elements.
-
select_n_absmin(self: libadcc.Tensor, arg0: int) → list¶ Select the n absolute minimal elements.
-
select_n_max(self: libadcc.Tensor, arg0: int) → list¶ Select the n maximal elements.
-
select_n_min(self: libadcc.Tensor, arg0: int) → list¶ Select the n minimal elements.
-
set_from_ndarray(*args, **kwargs)¶ Overloaded function.
set_from_ndarray(self: libadcc.Tensor, arg0: numpy.ndarray) -> libadcc.Tensor
Set all tensor elements from a standard np::ndarray by making a copy. Provide an optional tolerance argument to increase the tolerance for the check for symmetry consistency.
set_from_ndarray(self: libadcc.Tensor, arg0: numpy.ndarray[numpy.float64], arg1: float) -> libadcc.Tensor
Set all tensor elements from a standard np::ndarray by making a copy. Provide an optional tolerance argument to increase the tolerance for the check for symmetry consistency.
-
set_immutable(self: libadcc.Tensor) → None¶ Set the tensor as immutable, allowing some optimisations to be performed.
-
set_mask(self: libadcc.Tensor, arg0: str, arg1: float) → None¶ Set all elements corresponding to an index mask, which is given by a string eg. ‘iijkli’ sets elements T_{iijkli}
-
set_random(self: libadcc.Tensor) → libadcc.Tensor¶ Set all tensor elements to random data, adhering to the internal symmetry.
-
symmetrise(*args, **kwargs)¶ Overloaded function.
symmetrise(self: libadcc.Tensor, arg0: list) -> libadcc.Tensor
symmetrise(self: libadcc.Tensor, *args) -> libadcc.Tensor
-
to_ndarray(self: libadcc.Tensor) → numpy.ndarray[numpy.float64]¶ Export the tensor data to a standard np::ndarray by making a copy.
-
transpose(*args, **kwargs)¶ Overloaded function.
transpose(self: libadcc.Tensor) -> libadcc.Tensor
transpose(self: libadcc.Tensor, arg0: tuple) -> libadcc.Tensor
-
zeros_like(self: libadcc.Tensor) → libadcc.Tensor¶
-