Publications and references

This page holds a collection of publications related to adcc and lists references and software used in the context of adcc.

We kindly ask all users of adcc, who find the package useful for their research to cite the adcc paper [HSF+20] and the DOI of the adcc code in the version which was used for the calculation.

adcc publications

Paper:

https://img.shields.io/badge/DOI-10.1002/wcms.1462-blue https://img.shields.io/badge/hal-preprint-red

Code:

https://zenodo.org/badge/215731857.svg

HSF+20

Michael F. Herbst, Maximilian Scheurer, Thomas Fransson, Dirk R. Rehn, and Andreas Dreuw. adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods. WIREs Computational Molecular Science, 2020. doi:10.1002/wcms.1462.

SBS+20

Daniel G. A. Smith, Lori A. Burns, Andrew C. Simmonett, Robert M. Parrish, Matthew C. Schieber, and others. Psi4 1.4: open-source software for high-throughput quantum chemistry. J. Chem. Phys., 152:184108, 2020. doi:10.1063/5.0006002.

SFN+20

Maximilian Scheurer, Thomas Fransson, Patrick Norman, Andreas Dreuw, and Dirk R. Rehn. Complex excited state polarizabilities in the adc/isr framework. J. Chem. Phys., 153(7):074112, 2020. doi:10.1063/5.0012120.

HF20

Michael F. Herbst and Thomas Fransson. Quantifying the error of the core-valence separation approximation. J. Chem. Phys., 153(5):054114, 2020. doi:10.1063/5.0013538.

Other references

CCMT05

R. Cammi, S. Corni, B. Mennucci, and J. Tomasi. Electronic excitation energies of molecules in solution: state specific and linear response methods for nonequilibrium continuum solvation models. J. Chem. Phys., 122(10):104513, 2005. doi:10.1063/1.1867373.

CDS80

L. S. Cederbaum, W. Domcke, and J. Schirmer. Many-body theory of core holes. Phys. Rev. A, 22:206–222, 1980. doi:10.1103/PhysRevA.22.206.

Dav75

Ernest R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comp. Phys., 17(1):87 – 94, 1975. doi:10.1016/0021-9991(75)90065-0.

DW14

Andreas Dreuw and Michael Wormit. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. WIREs Comput. Mol. Sci., 5(1):82–95, 2014. doi:10.1002/wcms.1206.

Fet71

Alexander L. Fetter. Quantum theory of many-particle systems. McGraw-Hill, San Francisco ; London, 1971.

FD19

Thomas Fransson and Andreas Dreuw. Simulating x-ray emission spectroscopy with algebraic diagrammatic construction schemes for the polarization propagator. J. Chem. Theory Comput., 15:546–556, 1 2019. doi:10.1021/acs.jctc.8b01046.

FRDN17

Thomas Fransson, Dirk R Rehn, Andreas Dreuw, and Patrick Norman. Static polarizabilities and c6 dispersion coefficients using the algebraic-diagrammatic construction scheme for the complex polarization propagator. J. Chem. Phys., 146(9):094301, 2017.

KRW+12

S. Knippenberg, D. R. Rehn, M. Wormit, J. H. Starcke, I. L. Rusakova, A. B. Trofimov, and A. Dreuw. Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: two-photon absorption spectra. J. Chem. Phys., 136:064107, 2 2012. doi:10.1063/1.3682324.

LRD16

Daniel Lefrancois, Dirk R. Rehn, and Andreas Dreuw. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator. J. Chem. Phys., 145:084102, 8 2016. doi:10.1063/1.4961298.

LTMartinezD17

Daniel Lefrancois, Deniz Tuna, Todd J. Mart\'ınez, and Andreas Dreuw. The spin-flip variant of the algebraic-diagrammatic construction yields the correct topology of s1/s0 conical intersections. J. Chem. Theory Comput., 13:4436–4441, 9 2017. doi:10.1021/acs.jctc.7b00634.

LWD15

Daniel Lefrancois, Michael Wormit, and Andreas Dreuw. Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi-reference electronic ground states exploiting the spin-flip ansatz. J. Chem. Phys., 143(12):124107, 2015. doi:10.1063/1.4931653.

LKohn13

Bernd Lunkenheimer and Andreas Köhn. Solvent effects on electronically excited states using the conductor-like screening model and the second-order correlated method ADC(2). J. Chem. Theory Comput., 2013. doi:10.1021/ct300763v.

Men12

Benedetta Mennucci. Polarizable continuum model. WIREs Computational Molecular Science, 2(3):386–404, 2012. doi:10.1002/wcms.1086.

ND18

P. Norman and A. Dreuw. Simulating x-ray spectroscopies and calculating core-excited states of molecules. Chem. Rev., 118:7208–7248, 2018. doi:10.1021/acs.chemrev.8b00156.

RDN17

D. R. Rehn, A. Dreuw, and P. Norman. Resonant inelastic x-ray scattering amplitudes and cross section in the algebraic diagrammatic construction/intermediate state representation (ADC/ISR) approach. J. Chem. Theory Comput., 13:5552–5559, 2017. doi:10.1021/acs.jctc.7b00636.

SHR+18

Maximilian Scheurer, Michael F. Herbst, Peter Reinholdt, Jógvan Magnus Haugaard Olsen, Andreas Dreuw, and Jacob Kongsted. Polarizable Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in Biomolecular Systems. J. Chem. Theory Comput., 14(9):4870−4883, 2018. doi:10.1021/acs.jctc.8b00576.

SRK+19

Maximilian Scheurer, Peter Reinholdt, Erik Rosendahl Kjellgren, Jógvan Magnus Haugaard Olsen, Andreas Dreuw, and Jacob Kongsted. Cppe: an open-source c++ and python library for polarizable embedding. J. Chem. Theory Comput., 15(11):6154–6163, 2019. doi:10.1021/acs.jctc.9b00758.

ST04

J. Schirmer and A. B. Trofimov. Intermediate state representation approach to physical properties of electronically excited molecules. J. Chem. Phys., 120(24):11449–11464, 2004. doi:10.1063/1.1752875.

Sch82

Jochen Schirmer. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys. Rev. A, 26:2395–2416, Nov 1982. doi:10.1103/PhysRevA.26.2395.

Sch91

Jochen Schirmer. Closed-form intermediate representations of many-body propagators and resolvent matrices. Phys. Rev. A, 43:4647–4659, May 1991. doi:10.1103/PhysRevA.43.4647.

Sch18

Jochen Schirmer. Many-Body Methods for Atoms, Molecules and Clusters. Springer, 2018.

SRNorby+19

Casper Steinmann, Peter Reinholdt, Morten Steen Nørby, Jacob Kongsted, and Jógvan Magnus Haugaard Olsen. Response properties of embedded molecules through the polarizable embedding model. Int. J. Quantum Chem., 119(1):e25717, 2019. doi:10.1002/qua.25717.

TMG+00

A. B. Trofimov, T. É. Moskovskaya, E. V. Gromov, N. M. Vitkovskaya, and J. Schirmer. Core-level electronic spectra in adc(2) approximation for polarization propagator: carbon monoxide and nitrogen molecules. J. Struct. Chem., 41:483–494, 2000. doi:10.1007/BF02742009.

TKWS06

A.B. Trofimov, I.L. Krivdina, J. Weller, and J. Schirmer. Algebraic-diagrammatic construction propagator approach to molecular response properties. Chem. Phys., 329(1-3):1–10, October 2006. doi:10.1016/j.chemphys.2006.07.015.

WHWD15

J. Wenzel, A. Holzer, M. Wormit, and A. Dreuw. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states. J. Chem. Phys., 142:214104, 2015. doi:10.1063/1.4921841.

WWD14a

Jan Wenzel, Michael Wormit, and Andreas Dreuw. Calculating Core-Level Excitations and X-Ray Absorption Spectra of Medium-Sized Closed-Shell Molecules with the Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator. J. Comput. Chem., 35:1900–1915, 2014. doi:10.1002/jcc.23703.

WWD14b

Jan Wenzel, Michael Wormit, and Andreas Dreuw. Calculating X-Ray Absorption Spectra of Open-Shell Molecules with the Unrestricted Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator. J. Chem. Theory Comput., 10:4583–4598, 2014. doi:10.1021/ct5006888.

WRH+14

Michael Wormit, Dirk R. Rehn, Philipp H.P. Harbach, Jan Wenzel, Caroline M. Krauter, Evgeny Epifanovsky, and Andreas Dreuw. Investigating excited electronic states using the algebraic diagrammatic construction (adc) approach of the polarisation propagator. Mol. Phys., 112(5-6):774–784, 2014. doi:10.1080/00268976.2013.859313.

YD17

Chong Yang and Andreas Dreuw. Evaluation of the restricted virtual space approximation in the algebraic-diagrammatic construction scheme for the polarization propagator to speed-up excited-state calculations. J. Comput. Chem., 38:1528–1537, 6 2017. doi:10.1002/jcc.24794.

MarefatKhahKarbalaeiKhaniHattig18

Alireza Marefat Khah, Sarah Karbalaei Khani, and Christof Hättig. Analytic Excited State Gradients for the QM/MM Polarizable Embedded Second-Order Algebraic Diagrammatic Construction for the Polarization Propagator PE-ADC(2). J. Chem. Theory Comput., 2018. doi:10.1021/acs.jctc.8b00396.